This drawino an” s-ec¥cat'ons, herr?’;\\'.1 ia;e_j ;tll"!en gtr%pe-
it . R a' o :
f Digi"a' q . "or ora and °
?gg'cgiuceg' or TS cr osed in W og 4urraan aalggaust
{he has's .or . ° .anu.ac.ure or s2¢ At iterns wWin

A

PDP-K Technical Memorandum # 3-1

Extension of the PDP-11 Address Space

Title:
Author(s): Robert Gray
Index Keys: Memory
Paging
Segmentation
Distribution
Keys:
Revision: 1
Obsolete: Technical Memorandum $#3

Date: March 12, 1970

ABSTRACT

This memo discusses the limited address space in the PDP-11
archicecture.

Tha PDP-11 16-bit processor can address a maximum of 32K
(indirect or indexed) 16-bit words. A 32-bit version of the
2DP-11 could address 16K 32-bit words.

This aspect of the present PDP-11 architecture is examined

as a potential problem in larger versions (32-bits) of a
proposed PDP-1l family. The 16K limit is compared with medium
size computers offered by other manufacturers. It is also
compared with the expected user requirements of machines in
this performance category. Finally, this memo discusses brief-
ly the limit and advantages of two possible memory expansion
techniques: Paging and Sgementation.

It is concluded that the 16K limit in a 32-bit PDP-11 would
be a severe competitive handicap. It is further concluded
that neither paging nor sgementation offers an efficient way
to run procedures that exceed 16K 32-bit words.

Direct Addressing Capability of Other Computers

A survey was conducted to determine what direct addressing
capability other manufacturers offered in their computers.
The purpose of this was to give a perspective on the "competi-
tion" and to discover, through their hardwarxe, their estimates
of the amount of addressable memory needed in medium computers.,

In a family of computers, it is the viability of the upper
end processor (32 or 36-bit words) that would be most limited
by insufficient address space. Hence, the survey covered
only processors with word size above 16 bits. '

Representative 18, 24, 32, and 36-bit processors are presented
in the chart below, as well as the present PDP-11.

‘MAXIMUM WORDS ADDRESSABLE

No.
Processor Bits Direct Indirect Indexed
PDP-11 (XAll) 16 8 32Kr 32r
PDP-15 18 4K 32K 128K
DPD224 24 64K
XDS 940 24 16K 16K 64R
Sigma 5 & 7 32 128K 128K 128K
System 86 32 128K 128K 128Kk
KP Omega 32 Not Available
IBM 360 Series 32 4K 4000K 4000K

QKY8ms)

Univac 1108 36 64K 64K°™ 256K
PDP-10 36 256K 256K 256K
GE 635/645 36 256K 256K 256K

(gaits)

As can be seen in the chart above, the 16K of address capability
in a 32-bit machine is far below that of other machines in

this performance class. In the next section, we will examine
the need for address capability greater than 16K. This will

be broken down into two classes of systems: the single user
system and the multi-user (time-sharing) system.

The "Market" Need for Address Capability Greater than 16K

It is simple to say, "everybody knows 16K is too small in
a large machine.” But it is much harder to determine the
correct number.

Certain facts, however, tend to indicate larger computers need
greater than 16K. Such system programs as the PDP-15 Background/
Foreground Monitor "barely" runs in 16K. More orders are be-

ing received for PDP-15's with 32 to 64K. PDP-9 customers

are asking how they can put more than 32K on their machines.
There was such a market for the Ampex 128K memory system that

the PDP-10 group was forced to market it. The PDP-10 time-
sharing system requires about 48K to be "respectable" and

the average PDP-10 system being sold today is ordered with
64K.

Single User Market

DEC's traditional market has been in the scientific market.
This market often uses the real time capability of tlie proces-
sor and has very large problems: simulations, array manipu-
lations, real time control, etc. It is this class of users
who probably are most sophisticated in using the computer and
in evaluating competing processors. .They are also the group
that is often under-funded and, hence, try to get every last
bit of processing power out of their machine. 1In the future,
this group can be expected to attempt to write ever larger,
more complex programs as the complexity of the problems they
try to solve increases.

Consider the implications of 16K of 32-bit words on a user
doing matrix manipulations: assume that the user desires

a high-precision solution and, hence, chooses to use a quadruple
word floating-point format (64 bits) to store the matrix points.
Assume that 8K of the 16K 32-bit addresses available to the
user are to be occupied by procedure and the other 8K is to

be occupied by 3 matrices (allowing [A] + [B] = [C]). He

can then have a total of 4K. (of quadruple words), or 1,333
words per matrix. This will allow him to have 36 X 36 matrices
(1296 points per matrlx).' In certain classes of programs,

this is not sufficient (e g., llnear and dynamic programming).

Paging can be used to extendrthe amount of core on the BDP 11
as is being done on with the- KT1lA Paging Box. However, as
will be shown in the section describing paging, it will re-
quire many instructions every time a user tries to reference
a location outside his 16K. (and, assuming the mcnitor allows
such) to accomplish the-tr £er,

- Even with paging, a program gréater than 32K would have to

. be split into blocks with. an.-absolute minimum of cross zref-
erences between the blocks to-run efficiently. This makes
it more difficult to write programs and results in.very poor
\performance when they are finally operating. :

The Conventional Time-Sharing Market

This market is characterized by a different set of requirements
than the single user. 1In these systems all users. are using
high level langudges. In these systems, no attempt is made

to put all of a user's program in core at once. ‘The core is
allocated among many users"and parts of a given user's. program
are moved into core as the program requests them. This tech-
nique obviously does not provide the real-time capability that
a single user system can and a "job" in time-sharing mode
(assuming that the job contains few I/0 instructions) will
take much longer to be executed than if the job had all of

the computer to itself. A time-sharing system will often
process a job for a finite time slice or until it is waiting
for some I/0 process. At that time, the computer transfers

to another job .and, if necessary, moves the first job from
core onto some secondary storage, usually a high-speed disk.

It is usually assumed that to have an economically operating
system, this swapping must occur as it cannot be economically
justified to have enough fast memory to have all of the active
jobs totally in core. This philosophy has led to studies to
determine how to allocate the limited amount of core among
many programs. The studies give the impression that the first
rule is to attempt to divide core equally among the jobs -~
given equality in the jobs. The result of this memory alloca-
tion is that program execution speed is limited by the shering
of facilities and by the time taken as users are swapped in
and out of secondary storage. -

In this situation, the fact that a program exceeded the direct
address capabilities of the machine probably would less sig-
nificantly increase the time it took to run (compared with

a single user system), since the execytion time is already
limited by the program swapping, which is external to the
program itself. L e A :

To allow programs greater than 32K, however, means that the
compiler and monitors mnst be structured to allow writing
programs larger than the address space and must break them

up into parts that can be overlaid as the computation pro-
gresses. This is probably a very difficult task to accomplish
and would make large complex programs even more difficult to
document, debug and would:cgrtainly increase their time to
run. i :

Paging and Segmentation

There are two well-known techniques to expand memory space.
One, paging has previously been mentioned. This and the
second technique, segmentation, will be explained and examined

for possible ways to efficiently run procedures exceeding
16K on the PDP-11.

General Explanation of Paging

We can conceptually divide a core memory into sections.
For purposes of example, suppose we divide a memory system
into sections of 1024 words (sections of 2048, 4096, 512,
and 128 words are also commonly used.) We call each 1024
word section a "page.” A nominally 32K memory system will
then have 32 pages. The 10 least significant bits of the
address generated by an instruction will tell the location
of a reference within a page. We say that the least
significant 10 bits tell the location in terms of a "dis-
placement" from the lowest address of the page. The most
significant 5 bits of the address determine the page number
of the address. ‘ e

PAGE # = DISPLACEMENT

5 bits 10 bits

In a non-paged computer system, the 15 bit address is sent
unchanged to the memory from the processor. In a paged
computer system a hardware box is placed in the memory bus
between the processor; and the memory. This box passes the

10 bit displacement address directly to the memory. The
box, however, changes the page number (most significant 5 bits)
it receives and substitutes a new page number which it sends
on to the memory, assuming no page fault. The manner and
reason for this substitution requires explanation.

We will first consider a paging system where the *paging box"
hardware substitutes the same size page number as it receives.
In our 15 bit address example, this means that the paging box
sends a 5 bit page number and 10 bit displacement to the
memory. Thus, the address transmitted by the paging box can
directly address a maximum of 32K as could the original
address sent into the paging box.

In a time-sharing system, several programs may be in core

at one time. Because each program was written at a different
time and because segments of the memory were already occupied,
when a program was written one program may be physically in
several separate non-connected pages.

Virtual
Page
Address

Core
Page
Address

23
24

-8~

Core Memory Contents)

v/

//
JMP 1
YA

///3®,
IMP, 2K

7777|

Wikt

In the-above diagram the program is located in core at page

addresses 4, 7, 23 and 24.
for pages 1-4 (note JOMP instructions).
there is a problem!

The program won't w

Suppose the prograprwas written
It wopdld seem that
i eo

We could re-~

shuffle the programs in core to place the program in core

pages 1, 2, 3, and 4.
consuning and is not necessary with paging.

Suppose that whenever the paging box receives a page 1 address

This, however, would be very time-

from the processor, it sends to the memory page number 4 ad-
When it receives #2, it sends #7, receives #23 sgends

dress.

#3, receives #4 sends #24.

Then the program would access

tihhe correct core memory location even though its physical
page location was different from the page address sent by .

the program.

In this manner, the program never "knows" that

it was loaded into the physical core in several separate

places.

The program addresses pages l1-4 and operates normally

as if the instructions were really located at physical core

locations 1-4.

Suppose that we wish to have a memory system of nominally
128K of core and that we wish to have 4 different programs

in core at once on our 15-bit address computer.

We will have

one program in the first 32K, another in the second 32K (the
assumption that each program is in a continuous group of

pages is made to simplify this section.

Each program could

-

The physical core addresses are sometimes called
REAL addresses and the program addresses the VIRTUAL addresses.

be in any 32 pages with the separations as explained previously.),

etc.

_ Since we only have a 15~bit address capability in the
proposed computer, how can we address all 128K? First, recall

that any one program will address a maximum of 32K -- never
the entire core.

Suppose our paging box, when it receives

a 5-bit page number substitutes a 7-bit page number which it
sends to the memory. This 7-bit page number can then select
32 of the 128 pages. Obviously when programs are switched,
the paging box must be changed so that it substitutes a dif-
ferent page number corresponding to the relationship between
the VIRTUAL and REAL page #°'s of each program.

S — >
/8 BITS
S BIT Virtval Address
PAGE TABLE
Real Page Addr
Match |ope | I

7 Bits

|

17 BIT§ ———>

-jy-

Paging Box Substitution Technique

Each program has a table as part of it that contains the
relationship between its REAL and VIRTUAL pages. For sim-
plicity suppose that the page table is located in memory
locations 0-31 of the program. 1In location "0" is the REAL
page number where program {(VIRTUAL) page "0" can be found.
Hence, in operation, everytime a memory reference is performed,
the paging box first does a memory cycle to get the correct

REAL page number, which it sends out to wmemory. This is clearly
inefficient as it increases every memory cycle by 1 memory
cycle.

A newer technique is to place the page table in a special
memory called an associative memory. The associative memory

is usually a semiconductor memory that has very fast access,
For ouvr system we would need a maximum of 32 words in this
associative memory. First, let's consider the properties of

an "associative" memory. Recall that a given set of cores

in a stack has fixed address.. The address is determined by

how the stack is wired. 1In an associative memory word register,
there is a place to store the "data" and a place to store the
“"address" assigned to that data.

Address Data Associative Memory
e Word '

Hence, both the address and the contents are variable. The
contents of the address part of the word is said to contain
the address of the data "associated" with it. Suppose that
instead of 32 such registers, we only have 8 such registers.
Let's consider first what happens when the page number referenced
by the program is one of the addresses in one of the 8 registers.

Suppose that page 4 is requested by the processor. Let us
assume that his VIRTUAL page is located in page 24 of Real
core. Then one of the associative memory registers in the
paging box contains:

Address B Data

4 e 24

The 4 from the processor is compared, in parallel, w1th the
contents of the address part of each associative memory
regls;er.f If a match occurs, as it will here, the contents
of the ‘data’ sectlop Qf that assoczauzve register will be sent
% & ‘to Eq§ memozy as the REAL page address - in this example

.* " sinca semicandnckog 19giG is wsed hege, the time to
make ‘the comparison and then place the REAL address on the
memory lines is on the order of 100 nsec. This is about 1/10
the amount of time it would have taken to do the memory cycle
1f the associative memory had not been there.

Pinally, let us conszder what happens when the VIRTUAL page
requested by the processor does not match the contents of

any of the address parts of the 8 assocxatave registers. This
section w1ll alsc illustrate how paging can be used to provide
an automatic "overlay" system to make very large mrograms run
in computers with a small amount of core.

When no match occurs, the paging box will address the core
location equal to the page address it received fxrom the
processor. This will contain (since it is the page table
pmevxously defined) the REAL page address (and also some
“"control bits"). The boxX will then substitute the new
VIRTUAL page number and REAL page number associated with it
into one of the 8 associative registers. Then the REAL page
number is sent to the memory. From that time on any reference
i_to that page will be processed without a special reference to
the .core page table. (This assumed that the page was presently
in core.) Suppose that the program was larger than the amount
of core avallable.‘ Assume that there is 4X of core and there
is an 8K program. Obviously, not all of the program -can be .in
core at once. We could set up the page table so that VIRTUAL
pages 0, 1, and 2 were associated with real pages 0, 1, and 2
respectively. VI?TUAL pages 3, 4, 5, 6, and 7 could all be.
associated with REAL page 3. 1In this case, when a reference
to VIRTUAL page 4 is made {and some other virtual page is
.presently in REAL core page 3) the compuger first swaps out
the current content of REAIL page 3, next rolls in the virtual
page 4 and then places the new address and data in the asso- .
ciative memory ; fznally, the original program reference continues
and the program continues. To accomplzsh this, "control" bits
are usually part cf the "data" in the page table in addit;on
to the REAL page numbers.

In most of the above description of paging, simplifications

have been made. - This is done in order to stress the system
implications of paging on the addressing structure of a computer
system. All aspects of “memory protsction” are omitkad.

-12-

Paging Advantages

The efficiency of a multiprogramming system cam be increased
if several programs can be kept in core at all times. Withouf
paging (or relocation), the total amownt of zore to be shared
by all programs is limited to that directly addressable by the
processor. Hence, each program is allowed 1/n of the total
core where "a" is the number of programs in core. With paging
the total amount of core can be increased to the point where saveral
programs can have all the core they can directly address.

This scheme though, requiring much core, allows a given user
to take place by merely storing the "machine state" and
bringing in the previously stored state of the next Program.
The first user is not swapped ocut and the next does not have
to be rolled in from the secondary storage.

Also, in small systems with minimum core, paging provides an
automatic overlay technique 8o that a small core can be made
to appear as the maximum addressabie core. When a "non-core
resident" page is referenced by the program, a resident page
is swapped out and the new page is rolled in. The program
then continues as if the computer actually had the larger core.
Naturally, it results in a very slow execution of the program

- 1if there is lots of oVerlay.

Using paging to allow procsdures of greater

We have shown that u?qxrf can be ased to :
address space {allcw conmection of several the amount
of addressable core to the processor . We hoave, alss, -
shown that the addrsszs space ¢f the PDP-LL is insufficient
for a 32 bit computzr. Is there a way thab we can use pagin:
to run procedurés oreaser than 16X in the PRE-1L?

\; Bl
The answer is ves. Frocedures of greater iE cenld be
run on the PLp-il, but they would run very inefficiontly
and weuld increase the complenity ¢f the zysvems d2rograms.

Assanbiy

(]

For pioyg S5 BB SEI .

signed o acespl programs cﬁzﬁammﬁ
a program L I’:EN‘PME%@EQ@ it oould
him that his progran ran Over ’2’5"“(and

Gl b
g

e

nad broksn 1 m:» inte "sube-programs.®
would esch have a sepacate page cable
could provide a monitor call to change
a branch or refarance was mads
seogram. Phe ponlbtor o “‘z."i Rt ty
wubmwxv% cralm nans 2npd sta
rhe €rii-n, this ii.rz%.rt:sﬁﬁ;?as

:‘Xa

8 9.8

e
ERL

e Hhook
ot be
The awim

4 %
Grganlze BUD

jumps over subeprogs

High Level Lanquage Programs

In higher level languages, however, Fortran, Cobol, Basic,
etc., there is no opportunity to "manually re-organize"

the sub-programs. The compiler, unless it is extremely
sophisticated, can place the sub-program boundaries any-
where in the program. It could easily place the boundary
in the middle of a frequently used “DO" loop. Since it
would probably require 10 to 50 memory reference cycles of
overhead every time a sub-program boundary was crossed.

The result would be a very long execution time for the pro-
gram.

-16-

Iy
Desirability of using paqging to run procedures greater

than 16K.

In the 32/26 bit class of machines, about the only pro-
grams written in assembly language will be the operating
systems. We would not expect these to run greater than
16K and hence, we do not have to worry too much about
them. Most of the applications programs will be written
in FORTRAN or perhaps, BASIC or COBOL. For any large
program in a higher level language, the use of paging to
get the large address space invites disaster.

Because it is clear that many programs appropriate to a
32/36 bit class of machine will run over 16K and since
most of them will be in higher level languages, the use
of paging cannot be recommended as a solution to the
limited address capability of the PDP-11.

-17~

General explanation qf Seggentatibn

Segmentation, like paging, is a technique for dividing
the address space into parts. However, in segmentation
the two parts (segment, address) are usually each as
long as the total address space provided normally in the
machine. We will again consider a 16 bit processor as
the basis of further explanation.:

~+——15 bits—>
Normal Address

¢ 30 bits ~3
Segmented Address

Figure _3.| Normal and Segmented Addresses.

The segmented address is usually divided into two or three
parts. For this discussion, we will consider only two
parts: Segment number and Address number. Again usually
the address number is about 3 bits less than the normal
address.

__Segmenti Addressi E
i 18 bits __.,.‘4-—12_1::1&3 ———-—-—-—9»'
Figure éLE.SegmentedAaddress divided into two‘paxts.

This scheme allows 256K, 2K segments. If we examine the

15 right half bxts, it is clear that this includes 12 bits
of address and 3 bits of segment number. We could then say
that we could &irectly address 8 segments of 2K each.

The goal of the segmentation technique is to provide a con-

venient way to address the other 255, 998 segments. If this
can be obtained, then the size of programs for all practical
purposes can be unlimited.

~18-

GE645/MULTICS

This system accesses the other 255,998 assgments by using
a special form of indirect addressing. The low ordex 18
bits of the indirect word are not normally used as the
indirect word of 36 bits contains only an 18 bit address.
In a special ITS (Indirect Thru Segment) mode, several of
the normally unused bits contain.a code which cause the
18 bit address to be considered a new segment number and
cause the following word to be fetched and interpreted as
the address. o : o

Segment Address
_ % i
n Segment ITs

n+1 Address ITs

The PDP-1ll indirect word has only a single bit that is free,
arnd that bit is free only in word oriented instructions.
The bit is the Byte bit in the indirect address. 1In all
word instructions, this bit must specify a word boundary.

Consider the implications of using this bit to creates a
special ITS (Indirect thru Segment) operation. First of all,
none of the Byte 4dpbtructions could be used across segments
because that bit is used for addressing. MOVB could not

be used to transfer Bytes from one segment to ancther. Like-
wise, the other double operand/byte instructions couzld not
operate across segments. The single operand byte instructions
could reference only within their segment. Finally, in 2
compiler envirapment the choice weould have to be made be-
tween a multipass interatiwe compiler or one that generated
7S indirect addresses for all indirsct yraferences. This
would be necessary as every time an ITS instruction were

-3 G

inserted into the procedure section, it would bump some
other instruction out of the segment. The compiler would
then have to go back and make ITS instructions out of all
references to that instruction. This would have to con-
tinue until all out-of-segment references were made with
ITS formats. The only way to avoid this would be for the
compiler to assume that all references were ocut-of-segment
and create the double length address for all memory refer-
ences. This in the extreme case could aearly double the
program size and the execution time. 1In addition, it appears
that there would be considerable problems with stacks
crossing segment boundaries. Because of the problems just
described, this approach to segmentation cannot be recom-
mended to extend the PDP-11 address space.

IBM 360/Spectra

The IBM and RCA manuals call their addressing technigues

a segmentation system. As previously defined, the IBM/RCA
system is not segmentation. The normal indirect address

on these computers is 24 bit long (with space left to go

to 32 bits). All they have done is call the high indirect
address bits the "segment®" bits. This is a matter of seman-
tics and the technique is of no use whatsoever to the PDP-11
problem. Applying this would be to call the high order
bits of the PDP-1ll address the segment bits ~ the result
being the same address space as before. This scheme will
not be considered further and, of course, is rejected as

a possibility for the PDP-ll.

-2i-

Other Schemes

Several other segmentation schemes are mentioned in the
literature. None, however, seem to attack the problem of
extending the basic address space of the machine. They
are not discussed as their basic rational was for core
allocation or the technique was so interlocked with the
architecture of the particular computer that it was not
applicable. ‘ a

Segqmentation for thg PDP-11

We are, hence, left with creating a special instruction for
the PDP-11 that says: “Change Segments." Such an instruction,
except perhaps in a very expensive version, would be a mon-
itor call which would replace a current segment with the

new one. This is identical to the earlier scheme which we

called "paging" and it has the very same disadvantages.

We are, hence, forced to conclude, unless a different technique
can be demonstrated, that the PPP-1l architecture does not
lend itself to segmentation for address space expansion.

Conclusion

The address space problem is serious in the PDP-1l. Neither
the paging or segmentation techniques examined seemed to

be practical solutions to this. Since in order to be com-
petitive and to be able to efficiently run large problems
are requirements for a machine in the 32/36 bit class, the
PDP-11 architecture must be rejected as a candidate for this
market.

